In this worksheet, we come back to integrating: \(P \, dx + Q \, dy \) over a path \(C \). A physical interpretation of this integral with appropriate identification is work, or circulation, or flux.

We suggest three methods of evaluating this integral:

- Evaluate the integral directly.

- In case \(F(x,y) = [P(x,y)dx+ Q(x,y)dy] \) is "conservative", find the potential \(G \), so that \(\text{grad}(G) = F \). Then, use the Fundamental Theorem of integral calculus.

- In case \(F \) is not conservative and \(C \) is closed, Green's Theorem gives an alternate method for evaluating the integral. What happens if you use Green’s Theorem for “conservative” \(F \) on a closed path \(C \)?

Here are two statements of **Green's Theorem**.

FLUX:
The outward flux of a field \(E = Pi + Qj \) across a closed curve \(C \) equals the double integral of the divergence of \(F \) over the region enclosed by \(C \).

CIRCULATION:
The counterclockwise circulation of a field \(E = Pi +Qj \) around a closed curve \(C \) in a plane, equals the double integral of the kth component of the curl of \(E \) over the region bounded by \(C \).

EXAMPLES:
(1) \(F(x, y) = [\ln(x^2+y^2)dx + \ln(x^2+y^2)dy] \), \(C \) is the boundary of the half washer with radii: 1 and 2.
(2) \(F(x, y) = [xy \, dx + y^2+x^2 \, dy] \), where \(C \) is the triangle \([0,0], [3,0], [2,2] \).
(3) \(F(x, y) = [y^3+2y \, dx + 3y^2x \, dy] \), \(C \) is the circle with center \([0,0] \) and radius 3.