Everything is made of something!

Materials scientists and engineers invent the materials that make all of technology — and all other engineering disciplines — possible.

- Materials Science and Engineering is an interdisciplinary, research-focused field that combines aspects of physics, chemistry and biology to create and improve all the materials from which engineered objects are made. The materials created by materials scientists and engineers enhance our global quality of life.

- It’s no surprise that the “ages” of history (stone age, bronze age, iron age…) are named after materials. Just as iron enabled incredible advances in machinery and infrastructure, and the silicon transistor made computers and the information age possible, the materials being developed today will determine what technologies will be available in the future.

- The properties — mechanical, electrical, optical, magnetic and chemical — of a material depend on its structure: the arrangements of atoms and molecules. By understanding and manipulating structure, materials scientists develop materials with improved and unexpected properties.

- Nanotechnology, the ability to tailor the structure of materials at the nanometer scale, is one of the latest tools that materials scientists use to shape fields as diverse as biotechnology and the life sciences, information and communications technology, and energy and environmental technology.

- Since every technology depends on materials, Materials Science & Engineering graduates are in demand in every sector and industry. The broad interdisciplinary approach of Materials Science & Engineering is also ideal preparation for technology-oriented careers in business, law or medicine.
MS&E Class of 2014 gathered outside of the Moakley House for the Annual Senior Dinner. About half of MS&E graduates take industrial or government positions at locations such as Intel, the US Patent Office, and General Electric Solar; the other half go on to Masters and Ph.D programs at universities, including MIT, University of Illinois, and Stanford.

MS&E at Cornell
- 17 total faculty / 3 new faculty in past five years
- Close knit undergraduate group: 30 to 40 majors per year
- Small class size: Typically 30 to 50 in upper level required courses; 10 to 30 in electives
- Direct interaction with faculty
- Research intensive department: Many opportunities for undergraduate research, can focus on research in senior thesis
- Industrial Interactions: Engineering Coop, summer internships

Find out more about MS&E: mse.cornell.edu