CAM Colloquium: Noah Stephens-Davidowitz (CS, Cornell) - Foundations of lattice-based cryptography

Location

Virtual

Description

Abstract:

There has been a recent revolution in cryptography due to the introduction of lattice-based constructions. These are cryptographic schemes whose security relies on the presumed hardness of certain computational problems over ubiquitous (and beautiful) geometric objects called lattices. Their many applications (e.g., fully homomorphic encryption) and presumed security against adversaries with quantum computers has created some urgency to deploy lattice-based schemes widely over the next few years. For example, the National Institute of Standards and Technology is in the process of standardizing lattice-based cryptography, and Google has already implemented such a scheme in its Canary browser.

The security of the proposed schemes relies crucially on the assumption that our current best algorithms (both classical and quantum) for the relevant computational lattice problems cannot be improved by even a relatively small amount. I will discuss the state of the art in the study of this assumption. In particular, I will describe the fastest known algorithms for these problems (and potential directions to improve them) as well as a recent series of hardness results that use the tools of fine-grained complexity to provide strong evidence for the security of lattice-based cryptography.

Bio:
Noah Stephens-Davidowitz is a newly minted assistant professor in Cornell's computer science department. Before this, he was a postdoc at the Simons Institute in Berkeley. He has also been a postdoc at MIT, Princeton, and at the Institute for Advanced Study. He received his PhD from NYU, advised by Yevgeniy Dodis and Oded Regev. Much of Noah’s research uses the tools of theoretical computer science to answer fundamental questions about the security of widely deployed real-world cryptography, particularly post-quantum lattice-based cryptography. He is also interested more broadly in theoretical computer science, cryptography, and geometry.

Zoom Link Access:
This talk will be given via Zoom, and the link is emailed to the CAM Seminar listserv the week of the talk. If you are not on the listserv, please contact Erika Fowler-Decatur to request the link for this specific talk.